If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+n-7=0
a = 8; b = 1; c = -7;
Δ = b2-4ac
Δ = 12-4·8·(-7)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-15}{2*8}=\frac{-16}{16} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+15}{2*8}=\frac{14}{16} =7/8 $
| 8y-13=6y+7 | | 3(x-8)+5(2x+7)=76 | | 5x^2+15=75 | | (X-3)=5(x+6) | | 60=x+5x | | (x-6)^2=-55 | | 94.2=2(3.14)r | | B2+y=16+y | | 3x=25/1 | | 43=-5(x+4)+4(x+5) | | 3k=-5 | | 36+19n=24n+6 | | 4a^2-7a-9=0 | | 3^x-4=27^x | | (2/3z)=18 | | x/10-8=-1 | | 11=f-7 | | x/1000=0.190 | | (2/3)z=18 | | 21+7x=-15-2x | | 17-7(3-x)=x-4 | | r2-26-56=0 | | (-964)x12=720 | | 4x-5/3=6 | | -8(x+3)+3(x+7)=32 | | 11/17=y/13 | | 3w/2 +1=w+9/2 | | 49x^2+9=-42x | | 2x-5=2x+21 | | n2+4n=32 | | 48=6xx | | 12k-20=-1+11k-5 |